Química de Coordenação (IQG-241) Química Inorgânica II (IQG-364) QAT-Química-Licenciatura

Aula 7

Roberto B. Faria <u>faria@iq.ufrj.br</u> <u>www.iq.ufrj.br/~faria</u>

Departamento de Química Inorgânica

19/10/2024

Espectroscopia UV-vis de compostos de coordenação

Transições d-d Diagramas de correlação Diagramas de Orgel Diagramas de Tanabe-Sugano Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

A soma das dimensões no campo octaédrico é igual à multiplicidade do momento angular orbital (*L*)

$$S (L = 0) \rightarrow 2L + 1 = 1$$

$$P (L = 1) \rightarrow 2L + 1 = 3$$

$$D (L = 2) \rightarrow 2L + 1 = 5$$

$$F (L = 3) \rightarrow 2L + 1 = 7$$

$$G (L = 4) \rightarrow 2L + 1 = 9$$

$$H (L = 5) \rightarrow 2L + 1 = 11$$

$$I (L = 6) \rightarrow 2L + 1 = 13$$

Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

Os termos espectroscópicos, quando sujeitos à um campo octaédrico, transformam-se da mesma forma que os orbitais atômicos de mesmo número quântico azimutal.

$$S (L = 0) \rightarrow S (l = 0) \rightarrow A_{1g}$$

$$P (L = 1) \rightarrow p (l = 1) \rightarrow T_{1U}$$

$$D (L = 2) \rightarrow d (l = 2) \rightarrow E_g + T_{2g}$$

$$F (L = 3) \rightarrow f (l = 3) \rightarrow A_{2U} + T_{1U} + T_{2U}$$

$$G (L = 4) \rightarrow g (l = 4) \rightarrow A_{1g} + E_g + T_{1g} + T_{2g}$$

$$H (L = 5) \rightarrow h (l = 5) \rightarrow E_U + T_{1U} + T_{1U} + T_{2U}$$

$$I (L = 6) \rightarrow i (l = 6) \rightarrow A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g}$$

Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

Mas como os elétrons nos compostos de coordenação ocupam os orbitais *d* que são simétricos em relação ao centro de inversão, todos os termos *u* são alterados para *g*

$$\begin{split} S &\rightarrow A_{1g} \\ P &\rightarrow T_{1g} \\ D &\rightarrow E_g + T_{2g} \\ F &\rightarrow A_{2g} + T_{1g} + T_{2g} \\ G &\rightarrow A_{1g} + E_g + T_{1g} + T_{2g} \\ H &\rightarrow E_g + T_{1g} + T_{1g} + T_{2g} \\ H &\rightarrow A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g} \end{split}$$

Transformação dos termos espectroscópicos sujeitos à um campo octaédrico **fraco**

$$\begin{split} S &\rightarrow A_{1g} \\ P &\rightarrow T_{1g} \\ D &\rightarrow E_g + T_{2g} \\ F &\rightarrow A_{2g} + T_{1g} + T_{2g} \\ G &\rightarrow A_{1g} + E_g + T_{1g} + T_{2g} \\ H &\rightarrow E_g + 2T_{1g} + T_{2g} \\ I &\rightarrow A_{1g} + A_{2g} + E_g + T_{1g} + 2T_{2g} \end{split}$$

Início do desdobramento: Ligantes distantes do metal Condição de **"campo fraco**"

Condição de **campo forte** – ligantes próximos do metal – produto direto

As configurações possíveis para d² são: (t_{2g})² (t_{2g})¹(e_g)¹ (e_q)²

Multiplicidades de spin – caso $d^2 - (t_{2q})^1 (e_q)^1$

t _{2g}	eg	Σm _s
<u>X</u>	<u>X</u>	1, 0, 0, -1
<u>× </u>	<u> </u>	1, 0, 0, -1
<u> </u>	<u>X</u>	1, 0, 0, -1
<u> </u>	<u> </u>	1, 0, 0, -1
<u> </u>	<u>X</u>	1, 0, 0, -1
<u> </u>	<u> </u>	1, 0, 0, -1

tripleto = 1, 0, -1 singleto = 0 Multiplicidades de spin – caso $d^2 - (t_{2q})^1 (e_q)^1$

t _{2g}	eg	Σm _s
<u>X</u>	<u>X</u>	1, 0, 0, -1
<u>X</u>	<u> </u>	1, 0, 0, -1
<u> </u>	<u>X</u>	1, 0, 0, -1
<u> </u>	<u> </u>	1, 0, 0, -1
<u> </u>	<u>X</u>	1, 0, 0, -1
<u> </u>	<u> </u>	1, 0, 0, -1

tripleto = 1, 0, -1 singleto = 0 24 microestados $T_{2g} \otimes E_g = {}^{a}T_{1g} + {}^{b}T_{2g}$ 3a + 3b = 24

(a, b) só podem ser 1 ou 3

A única solução é: a = 1 + 3 (singletos e tripletos) b = 1 + 3 (singletos e tripletos)

$$^{1}T_{1g} + ^{3}T_{1g} + ^{1}T_{2g} + ^{3}T_{2g}$$

Termo de menor energia em campo forte caso $d^2 - (t_{2g})^1 (e_g)^1$

$${}^{1}T_{1g} + {}^{3}T_{1g} + {}^{1}T_{2g} + {}^{3}T_{2g}$$

Regras de Hund*:

- o termo mais estável é o de maior multiplicidade de spin
- o termo mais estável é o mais degenerado, T < E < A (não se aplica ao presente caso)
- embora não seja considerada uma regra de Hund: ${}^{3}T_{1q} < {}^{3}T_{2q}$

Multiplicidade de spin – caso $d^2 - (t_{2q})^2$

t _{2g}	Σm _s
<u>XX</u>	0
<u> </u>	0
<u> </u>	0
<u>X X</u>	1, 0, 0, -1
<u>X X</u>	1, 0, 0, -1
<u> </u>	1, 0, 0, -1

tripleto = 1, 0, -1 singleto = 0 15 microestados $T_{2g} \otimes T_{2g} = {}^{a}T_{1g} + {}^{b}T_{2g} + {}^{c}E_{g} + {}^{d}A_{1g}$ 3a + 3b + 2c + d = 15 (a, b, c, d) só podem ser 1 ou 3

Soluções possíveis: (3, 1, 1, 1) ou (1, 3, 1, 1) ou (1, 1, 3, 3)

$${}^{3}T_{1g} + {}^{1}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g} \text{ ou } {}^{1}T_{1g} + {}^{3}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g}$$

ou ${}^{1}T_{1g} + {}^{1}T_{2g} + {}^{3}E_{g} + {}^{3}A_{1g}$

Como pelos termos espectroscópicos não temos ${}^{3}E_{g}$ a última opção é descartada. E como só temos um termo ${}^{3}T_{2g}$ a segunda opção também é descartada pois o ${}^{3}T_{2g}$ teve que ser usado na configuração (t_{2g})¹(e_{g})¹

$${}^{3}T_{1g} + {}^{1}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g}$$

16

Termo de menor energia em campo forte caso d² – (t_{2g})²

$$3T_{1g} + {}^{1}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g}$$

Regras de Hund:

- o termo mais estável é o de maior multiplicidade de spin

- o termo mais estável é o mais degenerado, T < E < A

- embora não seja considerada uma regra de Hund: ${}^{3}T_{10} < {}^{3}T_{20}$

Multiplicidade de spin – caso $d^2 - (e_a)^2$

eg	Σm _s		
<u>XX</u>	0		
<u> </u>	0		
<u>X X</u>	1, 0, 0, -1		

tripleto = 1, 0, -1 singleto = 0 6 microestados $E_g \otimes E_g = {}^{a}A_{1g} + {}^{b}E_g + {}^{c}A_{2g}$ a + 2b + c = 6 (a, b, c) só podem ser 1 ou 3 matematicamente, b não pode ser 3

Soluções possíveis: (3, 1, 1) ou (1, 1, 3)

 ${}^{3}A_{1g} + {}^{1}E_{g} + {}^{1}A_{2g} \text{ ou } {}^{1}A_{1g} + {}^{1}E_{g} + {}^{3}A_{2g}$

Como d² não tem termo espectroscópico ³A_{1g} a primeira opção é descartada.

$${}^{1}A_{1g} + {}^{1}E_{g} + {}^{3}A_{2g}$$

Não há o termo ³A₁₉

Termo de menor energia em campo forte caso d² – (e_g)²

$${}^{1}A_{1g} + {}^{1}E_{g} + {}^{3}A_{2g}$$

Regras de Hund: - o termo mais estável é o de maior multiplicidade de spin - o termo mais estável é o mais degenerado, T < E < A - embora não seja considerada uma regra de Hund: ³T_{1g} < ³T_{2g}

Caso d²

Deve-se notar que para uma configuração d² não ocorrem os casos de campo forte e campo fraco.

O termo de menor energia em <u>campo fraco</u> (³T_{1g}) para a configuração d² conecta-se com o termo de menor energia em <u>campo forte</u> (³T_{1g}), conforme mostrado no diagrama de correlação.

28

Tipo d ¹	Tipo d ²
dı	d ²
d ⁶	d7
Tipo d¹ invertido	Tipo d ² invertido
d4	d ³
d 9	d ⁸

d⁵ não tem desdobramento, sendo um único termo ⁶S_{5/2} (falso sexteto)

- B é um dos parâmetros de Racah, sendo função da repulsão entre os elétrons no átomo do metal.
- B' é o parâmetro B, alterado pela presença dos ligantes
- $\beta = B'/B, \beta < 1, é a razão nefelauxética$
- B é tabelado para cada metal
- (1- β) pode ser estimado por tabelas; (1- β) = $h_x \times k_M$

A Série Nefelauxética

- O termo **nefelauxético** vem do grego, significando "expansão da nuvem"
- B é um dos parâmetros de Racah, sendo função da repulsão entre os elétrons no átomo do metal.
- B' é o parâmetro B, alterado pela presença dos ligantes
- $\beta = B'/B$, $\beta < 1$, é a razão nefelauxética ou parâmetro nefelauxético
- B é tabelado para cada metal
- (1- β) pode ser estimado por tabelas; (1- β) = $h_x \times k_M$
- Um baixo valor de β indica que os elétrons d do metal estão mais deslocalizados sobre os ligantes, correspondendo a um maior caráter covalente das ligações metal-ligante.
- A série nefelauxética é um ordenamento dos valores de β dos ligantes.

$|F - Sr^2 - Sr$

- Termos de mesma simetria "se repelem"
- $v_1 = \Delta_0$
- $v_2 = (9/5)\Delta_0 x$

•
$$v_3 = (6/5)\Delta_0 + 15B' + x$$

•
$$15B' = v_3 + v_2 - 3v_1$$

• Provando, $(6/5)\Delta_{o} + 15B' + x$ $(9/5)\Delta_{o} - x$ $-3\Delta_{o}$

$$B' = (v_3 + v_2 - 3v_1)/15$$

Valores em $cm^{-1}(1,2)$ $v_1 = \Delta_0$ v_2 v_{s} $[CrCl_6]^{3-}$ 13.180 18.700 [CrF₆]^{3−} 14.900 22.700 34.400 [Cr(ox)₃]³⁻ 17.500 23.900 [Cr(en)₃]³⁺ 21.800 28.500

 $\Delta_{o}(Cl^{-}) < \Delta_{o}(F^{-}) < \Delta_{o}(ox) < \Delta_{o}(en)$

$$B' = (v_3 + v_2 - 3v_1)/15$$

(1) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4^a ed., HarperCollins, 1993. pg.447 (2) Lever, A. B. P. Inorganic Electronic Spectroscopy, Elsevier, 1969. pg. 275

Valores em cm⁻¹ $v_1 = \Delta_0$ v_2 v_3 [CrCl_6]³⁻13.18018.700—[CrF_6]³⁻14.90022.70034.400[Cr(ox)_3]³⁻17.50023.900—[Cr(en)_3]³⁺21.80028.500—

B' = $(34.400 + 22.700 - 3 \times 14.900)/15 = 827$ B (Cr³⁺) = 933 (tabelado) $\beta = 827/933 = 0,886$

$$B' = (v_3 + v_2 - 3v_1)/15$$

Estimando o parâmetro nefelauxético, β

- $(1-\beta) = h_{x} \times k_{M}$
- $(1-\beta) = h_x(F^-) \times k_M(Cr(III))$
- (1-β) = 0,8 × 0,21
- $(1-\beta) = 0,168$
- $\beta = 0.832$ (estimado por tabelas)
- O valor estimado de β é próximo do valor experimental (0,886)
- O valor experimental de β é próximo de 1, indicando pouca covalência na interação ligante-metal.

I⁻ < Br⁻ < CN⁻ < CI⁻ < ox²⁻ < en < NH₃ < H₂O < F⁻

Transições eletrônicas e espectro – caso d²

- Termos de mesma simetria "se repelem"
- $v_1 = (4/5)\Delta_0 + X$
- $v_2 = (4/5)\Delta_0 + \Delta_0 + X$
- $v_3 = (3/5)\Delta_0 + 15B' + 2x$

•
$$15B' = v_3 + v_2 - 3v_1$$

• Provando,

 $(3/5)\Delta_{0} + 15B' + 2X$ $(4/5)\Delta_{0} + \Delta_{0} + X$ $-(12/5)\Delta_{0} - 3X$

$$B' = (v_3 + v_2 - 3v_1)/15$$

Diagrama de Orgel – d³ (campo fraco)

- As energias dos termos, mudam com o valor da campo.
- Os termos de mesma simetria "se repelem".

43

Diagrama de Orgel – d⁷ (campo fraco)

Diagramas de Tanabe-Sugano

São idênticos aos de Orgel, com as diferenças:

- São encontrados apenas para complexos octaédricos.
- Incluem informações de campo forte e campo fraco.
- Os eixos das abscissas e ordenadas são dados em Dq/B (ou Δ_{o} /B) e E/B, respectivamente.
- Cada diagrama é válido para uma razão C/B específica, onde B e C são parâmetros de Racah que descrevem a energia de separação entre estados de mesma multiplicidade de spin.
- Os diagramas de Tanabe-Sugano que se encontram mais facilmente, referem-se a uma razão C/B que se adequam aos elementos da primeira série de transição.
- O termo de menor energia é sempre a abscissa (eixo horizontal).
- A linha vertical que aparece em alguns diagramas, separa as regiões de spin alto e spin baixo, correspondendo ao valor de Dq/B (ou Δ_0 /B) em que o termo de menor energia passa a ser outro.
- A principal utilização desses diagramas é na atribuição das bandas dos espectros eletrônicos (UV-vis) dos complexos, observando-se a regra de seleção de multiplicidade de spin (Δ S = o).

Diagramas de Tanabe-Sugano

Os diagramas de Tanabe-Sugano podem ser encontrados em muitos livros de Química Inorgânica, como, por exemplo, na referência indicada abaixo.

Ver Diagramas de Tanabe-Sugano para aulas. pptx

- Tanabe. Y.; Sugano, S. On the Absorption Spectra of Complex Ions. II, J. Phys. Soc. Japan, 1954, 9(5), 766-779
- Weller, M.; Overton, T.; Rourke, J.; Armstrong, F. Química Inorgânica, 6ª ed., Bookman: Porto Alegre, RS, 2017.
- Salles, M. R. Espectroscopia eletrônica dos compostos de coordenação, In: de Faria, R. F (Organizador), Química de Coordenação
 - Fundamentos e atualidades, 2ª ed., Editora Átomo: Campinas, SP, 2009. p. 215-259

	Vı			ν ₂		
	nm	cm⁻¹	ε/M⁻¹ cm⁻¹	nm	cm⁻¹	ε/M⁻¹ cm⁻¹
K ₃ [CoF ₆]	877	11.400		690	14.500	
[Co(acac) ₃]	594	16.835	141			
$[Co(NH_3)_6]Cl_3$	475	21.053	56	339	29.500	46
$[Co(en)_3]Cl_3$	466	21.459	75	338	29.586	70
$K_{3}[Co(CN)_{6}]$	311	32.154	206	258	38.760	148

Sofre deformação Jahn-Teller (d⁶, campo fraco) Ou seja, Tanabe-Sugano não é de grande utilidade para d⁶, campo fraco

Lei de Lambert-Beer: Abs = $[X]\varepsilon_x b$

 $[Co(en)_3]Cl_3$

K₃[Co(CN)₆]

	V ₁			ν ₂		
	nm	cm⁻¹	ε/M⁻¹ cm⁻¹	nm	cm⁻¹	ε/M⁻¹ cm⁻¹
$K_{3}[CoF_{6}]$	877	11.400		690	14.500	
[Co(acac) ₃]	594	16.835	141		<u> </u>	
$[Co(NH_3)_6]Cl_3$	475	21.053	56	339	29.500	46
[Co(en) ₃]Cl ₃	466	21.459	75	338	29.586	70
$K_{3}[Co(CN)_{6}]$	311	32.154	206	258	38.760	148

Pelo diagrama de Tanabe-Sugano para d⁶ as transições esperadas são: Campo fraco (apenas uma transição permitida)

 ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ Campo forte (várias transições permitidas, mas apenas duas de baixa energia) ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ ${}^{1}A_{1q} \rightarrow {}^{1}T_{2q}$

Espectros eletrônicos – Regras de seleção

Lei de Lambert-Beer: Abs = $[X]\varepsilon_x b$

- Transições eletrônicas permitidas apresentam absortividade molar, ε, da ordem de 20.000 a 50.000 M⁻¹ cm⁻¹
- Todas as transições nos complexos octaédricos são proibidas pela Regra de Laporte:
- São permitidas apenas as transições $u \leftrightarrow g$. Com isso, 10 < ε < 1.000
- Para transições que também violem a regra de multiplicidade de spin, $\Delta S = 0$, temos duas proibições, fazendo com que $\varepsilon < 1$

Espectros UV-vis – Co²⁺ (d⁷)

- A comparação dos espectros dos complexos [Co(OH)₆]²⁺ e [CoCl₄]²⁻ mostra que as bandas do complexo tetraédrico são muito mais intensas.
- Explica-se pelo fato da geometria tetraédrica não ter centro de inversão, fazendo com que as transições eletrônicas no [CoCl₄]²⁻ não possam ser proibidas pela Regra de Laporte

Ver espectros Co(II) – d⁷ - campo fraco – spin alto

Espectros UV-vis – Mn²⁺ (d⁵)

- A comparação dos espectros dos complexos [Mn(OH₂)₆]²⁺ e [MnBr₄]²⁻ mostra que as bandas do complexo tetraédrico são muito mais intensas.
- Explica-se pelo fato da geometria tetraédrica não ter centro de inversão, fazendo com que as transições eletrônicas no [MnBr₄]²⁻ não possam ser proibidas pela Regra de Laporte
- Mesmo assim, as bandas do [MnBr₄]²⁻ têm 1 < ε < 4 M⁻¹ cm⁻¹, pois são proibidas pela regra de multiplicidade de spin (ver diagrama de Tanabe-Sugano d⁵).

Ver espectros Mn(II) – d⁵ campo fraco – spin alto

 $\frac{3}{5}\Delta_t$

Espectros UV-vis – Mn²⁺ (d⁵)

- No caso do complexo $[Mn(OH_2)_6]^{2+}$ temos duas proibições, Laporte e $\Delta S = 0$, fazendo com que 0,01 < ε < 0,04 M⁻¹ cm⁻¹
- A largura das bandas também pode ser explicada considerando-se que o íon complexo está vibrando, o que leva ao alargamento da banda.
- As bandas correspondentes às transições que vão para termos que pouco mudam de energia com o valor do campo, são mais finas:
 ν₁ em 18.000 cm⁻¹, banda larga, ⁶A_{1g} → ⁴T_{1g} (que desce fortemente)
 ν₂ em 23.000 cm⁻¹, banda larga, ⁶A_{1g} → ⁴T_{2g} (que desce fortemente)
 ν₃ em 25.000 cm⁻¹, banda fina, ⁶A_{1g} → ⁴E_g (que, praticamente, não se altera com a variação de Δ₀)
 ν₄ em 26.000 cm⁻¹, banda fina, ⁶A_{1g} → ⁴A_{1g} (que, praticamente, não se altera com a variação de Δ₀)

Espectros UV-vis – Cu²⁺ (d⁹)

- A adição de NH3 à uma solução azul de [Cu(OH₂)₆]²⁺ torna a cor azul mais intensa.
- À princípio, poder-se-ia pensar que estaria se formando um complexo tetraédrico com o ligante NH3, que não tem a proibição de Laporte.
- Mas o que ocorre é a substituição gradual dos ligantes água pelo ligante NH3, formando complexos octaédricos [Cu(NH₃)_x(OH₂)_{6-x}]²⁺
- A cor azul do [Cu(OH₂)₆]²⁺, é devido a cauda da banda com máximo no infravermelho próximo, que absorve um pouco do vermelho e do laranja, cujas cores complementares são o verde e o azul.
- Como o ligante NH3 é de campo mais forte que a água, quanto mais ligantes NH3 tiver o complexo, mais a banda desloca-se para o visível, aumentando a intensidade da cor.

Espectros UV-vis – Cu²⁺ (d⁹)

Ver espectros – Fig. 21-H-5, Cotton e Wilkinson (1980)

